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ABSTRACT 

The one-dimensional magnetohydrodynamic equations are given in a 
form suitable for computer solution for an arbitrary gas model.    Evalua- 
tion of certain parameters for the case of argon shows that the upper limit 
on the ratio of the electric field strength to the magnetic field strength for 
acceleration of a supersonic flow in a constant-area accelerator is strongly 
influenced by non-ideal gas effects. 
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SECTION  I 
INTRODUCTION 

The phenomena that occur in crossed-field accelerators are complex 
and, at present, incompletely understood.    It appears that two-dimensional 
analyses are necessary in order to explain certain phenomena.    Refer- 
ence 1 is an example of such an analysis.    In this particular case,  it was 
necessary to restrict the analysis to constant properties (weak interaction 
theory).    The results do shed some light on the phenomena, but it is clear 
that the extension to the case in which the flow is accelerated is an ex- 
tremely difficult task. 

The one-dimensional approach (Ref.  2) can treat the case for which 
there is significant energy addition, but as pointed out in Ref.   1,  "... it has 
not been possible to apply these treatments to the correlation of experi- 
mental data. "   Further,   "the one-dimensional approach is deficient largely 
because of fringing electromagnetic fields and the Hall effect. "   Since the 
time these statements were written, experience has been gained which 
indicates that if the Hall effect is either small because of high density,  or 
eliminated by the use of segmented electrodes,  somewhat more reasonable 
agreement between theory and experiment is obtained.    In any event, one- 
dimensional analysis will probably continue to play an important role in 
preliminary analyses. 

The particular set of one-dimensional equations given here, which of 
course is not unique, was obtained for use in a computer program devel- 
oped by Guy Gilley of the von Ka'rman Gas Dynamics Facility (VKF) 
Instrumentation Branch, AEDC. The program was originally written for 
the use of argon in a magnetohydrodynamic (MHD)-augmented shock tube. 
It is currently being rewritten to allow for an arbitrary gas by use of a 
table of properties. 

It was found that one facet of the experiments of Leonard (Ref.  3) 
could be explained by non-ideal gas effects.    In his experiments, accelera- 
tion was obtained under conditions for which,  according to the ideal gas 
results of Ref.  2, deceleration would result.    It was suggested by Dr. 
L. E. Ring'that the discrepancy could be explained by non-ideal gas effects. 
Based on the MHD equations given here, and using properties based on a 
simplified model for argon, this item is explained quantitatively. 
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SECTION   II 
SOME THERMODYNAMIC RELATIONS FOR A NON-IDEAL GAS 

The purpose of this section is to establish some thermodynamic rela- 
tions which are necessary in the following sections. 

The gas under consideration may be non-ideal in two ways.    First, 
the compressibility factor may be different from unity, 

P = Z(P,T)pRT (1) 

Second, enthalpy may be a function of pressure as well as temperature, 

H = H(P,T) (2) 

Throughout,  pressure and temperature are taken as the independent 
thermodynamic variables.    An equally useful pair is density and tem- 
perature.    Pressure is used here in preference to density, because 
certain relations are slightly simpler,  although admittedly the advantage 
is small. 

The differential form of Eq.   (1) is 

^P       d2_      dp       dT 
p z        p T 

Two compressibility factor derivatives are defined by 

ZT - *-  -fZ- 1 Z     31 

=     d In  Z 

and 
d In T 

r z    dp 

d In Z 
d In P   j 

so that 
dZ 7 dT 

Using Eq.  (6) in Eq.  (3) gives 

dp dp dT (1 + Zp) ^=  J-+ (1 + ZT) ~- 

Turning now to Eq.  (2),  it becomes in differential form 

«W = CpdT + Jjj- dp 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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A general thermodynamic relation is 

dP -r        p 

from which 

t   (l 
' -T *- (,L) 

dp 
7'T 

P 

Therefore, 

dH - C„dT - ZT  ~ 

(9) 

(10) 

(11) 

The internal energy, e, is given by 

so that 

e   =  H   - 

, .„ dp P   dp 
de  - dH  - -y +   j -f- 

Using Eq.  < 11) gives 

de = CpdT - (1 + ZT) ~ + y *r 

The specific heat at constant volume is 

r    -    tfe 

From Eq.   (7) 

so that 

= CP^(1+ZT)-L £ 

_^P I _P     1  +ZT 

<?T[p T    1  + Zp 

Cy     =    Cp     —    ZR 

The ratio of specific heats, 

y - Cp/Cv 

can then be found from 

(ltZT)' 
1 ■*- Zp 

_L =   1 (1 + ZT)      ZR 
y 1 + Zp       Cp 

The speed of sound is found from 

* 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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For constant entropy 

Using this in Eq.  (11) gives 

dH = -^ (dS = 0) 
P (21) 

(1  + ZT) -**■- CpdT (dS = 0) (22) 

This is then used in Eqs. (7) and (19) to give 

! + Zp  _df. =   *£_ (23) 
Y P P 

Therefore, 

a   = 
] + Zp    p 

=  y ZRT 

i + zP 

(24) 

The effective ratio of specific heats is 

ye = 
Which from Eq.  (24) is found to be 

ye = -ef- (25) 

1 + Zi 
(26) 

An expression that is needed later is a relationship involving dH, dP, 
and dp.    Using dT from Eq.  (7) in Eq.  (11), 

dH 

From Eq.   (19) 

[£jL    1 + z? - ZT"1 Ü _      C>T    i£_ (27) 
I  ZR    1 + ZT \   P 1 + ZT    p 

-ä-^:-T^ll + ZT> (28> 

so that 

,„       y+ HP   dP       cp T      dp 
d« = -j—r — ~ TTz7 T <29> 

SECTION  III 
MHD ACCELERATOR EQUATIONS 

The equations for the steady-state inviscid flow through a one- 
dimensional crossed field with a low magnetic Reynolds number are (Ref. 2)* 

♦The energy equation of this reference has been generalized by 
replacing Cp dT by dH, and the printing error has been corrected. 
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pUA   -   m   -   constant (30) 

l*fl|-*fr-*B(B.BÜ) (31) 

p*(fi- + u #)-■=«:-«:> <32> 

These equations express, respectively, the conservation of mass, momen- 
tum, and energy.    The nomenclature is conventional. 

It is desired to solve for the acceleration, dU/dX,  and the rate of 
heating dH/dX.    The pressure derivative in Eq.  (31) is eliminated by using 
Eq.  (29),  with Eq.  (30) used to eliminate the density.    The resulting equa- 
tion may then be solved with Eq.  (31) to give for the acceleration 

I" y-I        CpT 1 ~| dU y-I CpT        1      dA 

I      "*   1 + ZT     1 + ZT  ~FJ ~dT ~    1 + ZT    1  + ZT   TJÄ   dJT + 

(E - BU) -^- ±-[lLL*L BU  - E! 
1 + ZT    V I   y- 1 I 

crA + —— 
m 

It may be shown from Eqs.  (19),  (25),  and (26) that 

y-l       CPT 
a   = 

1 + ZT    1   +   Zf 

so that 

dX P     ya(l + ZT) V y + ZT     /        A    dX (33) 

The enthalpy equation is found to be 

mt -i) «L= ^L   r+'T (E _ BU)rEfi - I±*L_U- BU]--^^-<
34

> 

Equations (33) and (34) are in a form that may be solved numerically 
for given area distribution, A(X), electric field distribution, E(X), and 
magnetic field distribution,  B(X).    Each of the equations is integrated one 
step forward to give new values of U and H.    Equation (30) then gives a 
new value for the density, and from the two state properties, p and H, the 
necessary additional properties may be found.    These required properties 
are a, a, y,  ye and ZT- * 

*If allowance is made for electrode spacing and the Hall effect, the 
conductivity is also a function of the imposed magnetic field, B. 
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For the case of an ideal gas, ZT = 0, ye - Y, and the above equations 
reduce to 

,*_„  «L. i,«.«»(a, -^i-B)*i& (35) 

and 

*.iif.fii-m[i(i-J,)-iii]4i| 
which are the results of Resler and Sears (Ref.  2). 

(36) 

In comparing the expression given by Eqs.   (33) and (34) with Eqs. 
(35) and (36), a number of differences are noted.   The first is the presence 
of an additional factor 

y + zT 
ye (i + zT) 

Calculations for a simplified argon model,  described in the following 
section,  showed that the value of this parameter varied only slightly from 
unity.    For this case,  this additional factor may be neglected.    There is, 
in addition,  the grouping 

y-' 
y +  ZT 

appearing in Eq.  (33), and the grouping 

i + zT 

Y + ZT 
appearing in Eq.  (34).    The values of these parameters are strongly 
dependent upon real gas effects.    In addition,  the parameter a2 implicit 
in the Mach number is a non-ideal value. 

Figure 1 illustrates one of the basic points revealed by the present 
analysis.    This particular figure is adapted from a similar one appearing 
in Ref.  2 and shows the regions in the M-U plane for which flow accelera- 
tion occurs in a constant area accelerator.    The boundaries of these 
regions may be obtained from Eq.  (33).    With regard to the Mach number, 
the primary region of interest is for supersonic flow,  since acceleration 
from a subsonic flow to a supersonic flow is not likely (Ref. 2), and there- 
fore significant heating would occur in accelerating a subsonic flow to high 
velocities. 

For supersonic Mach numbers, the condition on acceleration is that 
the flow velocity must be less than 

(3 7) u, = E 
B 

Ui = Y- 
Y + 

1 E 
B 

and greater than 
y-1      E 

(38) 
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{the term Zrp does not appear in Ref.  2, since they consider only an ideal 
gas).    The upper velocity limit occurs since the current density 

J = a(E - BU) (39) 

would otherwise be negative.    This velocity is also important in that it 
represents the maximum velocity obtainable with an unsegmented electrode 
accelerator.    The second limit, 

y  -l-  Zf     B 

occurs because otherwise there would be enough heating of the gas that the 
resulting pressure rise would give a retarding force larger than the elec- 
tromagnetic accelerating force.    In view of the nature of the non-ideal gas 
effects,  it is to be expected that these effects would cause a decrease in 
Ui,  since there are modes which absorb energy without a resulting pres- 
sure rise. 

The maximum velocity increase obtainable for an unsegmented elec- 
trode accelerator in a supersonic stream is 

Uinlet GÜr). 

Jh_ (40) 
u, 
y + ZT 
y- 1 

For an ideal gas,  with y = 5/3,  this gives a maximum velocity ratio of 2. 5. 
Since greater velocity ratios than this have been obtained experimentally 
(Refs. 3 and 4), the non-ideal gas effects are quite noticeable.   These 
topics are discussed more completely in the next section after values are 
obtained for some of the parameters. 

SECTION  IV 
SINGLY IONIZING ARGON 

Argon is a convenient gas for use in shock tubes,  since it is readily 
available, and the properties are comparatively well-known.    In conjunc- 
tion with MHD accelerator studies,  argon has been used as a test gas with 
seed (Ref. 5) and as a pure gas (Refs.  3 and 4).    A number of theoretical 
calculations of argon properties have been made (Refs.   6 through 9). 

In order to study the effects of a non-ideal gas, a simplified thermo- 
dynamic model is chosen here.   The alternative approach is to generate 
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the required quantities by numerical differentiation and interpolation of 
tabular data.   This work is currently being done, but for the present 
purposes, an approximate approach is adequate. 

The simplified argon model used here is based upon the following 
assumptions: 

1. Single ion iz at ion only 

2. Negligible electronic energies 

3. Negligible interaction between particles,  except at 
collisions. 

This last assumption means that both short range (second virial) and long 
range (coulombic) forces are neglected.    A comparison of the results 
based on the simplified model with those from more exact calculations 
indicates that the simplified model provides reasonable results for tem- 
peratures below about 20, 000°K for pressures below about 100 atm. 

With the above assumptions, the degree of ionization is found to be 
given by 

a  = 
n e + ttA L T  < J 

~2 (41) 

where . .», 

\27rme/ k 4        Ze Zj 

Using the value of 12 for the ratio of partition functions,  i. e. 

(42) 

2«ZA =  12 

gives 

In addition, 

K  =  2.48   (°K)VV{newton/ms) 

=  2.51  x  10*   (°K)VVatm 

Ei/k  =  182,100°K 

Figure 2 gives a comparison of the electron density obtained from 
the simplified theory with that given by the more detailed calculations of 
Ref.  6.    It can be seen that reasonable agreement is obtained for tempera- 
tures below about 20, 000°K.    The range of validity of the simplified model 
is somewhat greater than might be expected on the basis of the assumptions 
made.    For example, it can be seen from Fig.  3 that the assumption of a 
constant value for the ratio of the internal partition functions is not very 

8 
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accurate.    However, in the calculations of Ref. 6, a lowering of the 
ionization potential (Ei) is also included.   The reduction in the partition 
functions (caused by truncation of the electronic series) and the reduc- 
tion in ionization potential are partially compensating, as pointed out in 
Ref.  10. 

Having determined the degree of ionization, the compressibility 
factor is obtained from 

Z   =  1  + a (43) 

and the equation of state is 

P - pZRT 

where 

R  = 208 joule/kg °K 

= 2239(ft/sec)7°K 

The enthalpy is 

H = 2.5 ZRT  +  (Z  - DREi/k (44) 

(the electronic energies are neglected). 

In order to evaluate the compressibility derivatives, Eq.  (41) is 
rewritten 

so that 

_L -   1    +      KP        El/kT 

a T * 

 2__  da_ 
a      dP T T^ 

*■  - e 

■i(+-1) 
Therefore, 

ZP = -i- B(1 - a) (45) 

In a similar manner 

ZT = \ «<1 - a) (}+ -EL) (46) 

The specific heat at constant pressure is evaluated from Eq.  (44). 

9 
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Cp  = 2.5  ZR  *  (2.5' RT + REj/k)  j^r 

Using Eq.  (46) gives 

C 'P -(i + .)«[f - T a(1 - a)'(I + TF)
2
] (47) 

Using the above results in Eq.  (19) gives 

[l»4M..>(-f.,-&)7 
I.♦.)(..J-.) i.i».„(i.i)' 

1 
— = 1 - 

and from Eq,  (26) 

(l + a) A   -  -l-^ 

(.48) 

(49) 

Sufficient information has now been given to allow the pertinent param- 
eters to be evaluated. *   Consider first the grouping of parameters 

y + ZT 
ye (i + ZT) 

which appears as a multiplying factor in Eqs. (33) and (34).   Calculations 
covering the range of pressures from 0. 1 to 1000 atm, with temperatures 
up to 20, 000 °K,  showed that this parameter has a value between 0. 94 and 
1.0.    Therefore,  the non-ideal gas effects caused by this particular group- 
ing are essentially negligible. 

The most important non-ideal gas effect is found in the lower limit 
on velocity given by Eq.  (38).    Since normally the velocity is known, this 
is equivalent to placing an upper limit on E/B,  so that 

(BUJB.,
! 

Zf 

y-l 

as given by Eq.  (40).   The value of this parameter is given in Fig. 4.    This 
figure shows that significant increases above the ideal gas value of 2.5 are 
obtained, especially at the lower pressures. 

Figure 5 gives the results in the form of the maximum value of E/B 
allowable based on the conditions behind an incident argon shock.   Also 
shown is the range of inlet conditions of the experiments of Leonard (Ref. 3) 

*The calculations were made with programs developed by John Duncan, 
VKF Instrumentation and Ernest Burgess, Scientific Computing, ARO, Inc. 
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which is the only source of experimental data available at present.* In 
only one run (No.  76) was the actual E/B close to the calculated upper 
limit for acceleration.    There is nothing about the data for this particular 
run to indicate any significant differences from the other runs.    However, 
there are difficulties in interpreting the data,  since the measured quanti- 
ties are shock speed and flow velocity behind the shock,  and according to 
the theory of Ref.   11,  both heating and flow acceleration lead to an increase 
in shock speed.    One might expect intuitively that,  with high heating,  the 
shock deceleration downstream would be greater.    However,  severe shock 
deceleration occurs for all the cases,  and no definite conclusion can be 
drawn.    Leonard attributes the slow-down to the large magnetic-field 
gradient at the exit. 
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